Bionics is Reverse Engineering

Reverse engineering

Reverse engineering is the process of discovering the technological principles of a device, object, or system through analysis of its structure, function, and operation. It often involves taking something (e.g., a mechanical device, electronic component, software program, or biological, chemical, or organic matter) apart and analyzing its workings in detail to be used in maintenance, or to try to make a new device or program that does the same thing without using or simply duplicating (without understanding) the original.


Bionics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology.

Velcro was inspired by the tiny hooks found on the surface of burs.

A classical example is the development of dirt- and water-repellent paint (coating) from the observation that the surface of the lotus flower plant is practically unsticky for anything (the lotus effect).

The term “biomimetic” is preferred when reference is made to chemical reactions. In that domain, biomimetic chemistry refers to reactions that, in nature, involve biological macromolecules (for example, enzymes or nucleic acids) whose chemistry can be replicated using much smaller molecules in vitro.

Examples of bionics in engineering include the hulls of boats imitating the thick skin of dolphins; sonar, radar, and medical ultrasound imaging imitating the echolocation of bats.

In the field of computer science, the study of bionics has produced artificial neurons, artificial neural networks, and swarm intelligence.

It is estimated by Julian Vincent, professor of biomimetics at the University of Bath’s department of mechanical engineering Biomimetics group, that “at present there is only a 12% overlap between biology and technology in terms of the mechanisms used“.

Methods used in Bionics

Often, the study of bionics emphasizes implementing a function found in nature rather than just imitating biological structures. For example, in computer science, cybernetics tries to model the feedback and control mechanisms that are inherent in intelligent behavior, while artificial intelligence tries to model the intelligent function regardless of the particular way it can be achieved.

Lotus leaf surface, rendered: microscopic view

The conscious copying of examples and mechanisms from natural organisms and ecologies is a form of applied case-based reasoning, treating nature itself as a database of solutions that already work.

Although almost all engineering could be said to be a form of biomimicry, the modern origins of this field are usually attributed to Buckminster Fuller and its later codification as a house or field of study to Janine Benyus.

Roughly, we can distinguish three biological levels in the fauna or flora, after which technology can be modeled:

See also: